Flowschool - Образовательный портал

Как найти высоту треугольника если известны все стороны формула. Высота треугольника

Для решения многих геометрических задач требуется найти высоту заданной фигуры. Эти задачи имеют прикладное значение. При проведении строительных работ определение высоты помогает вычислить необходимое количество материалов, а также определить, насколько точно сделаны откосы и проемы. Часто для построения выкроек требуется иметь представление о свойствах

У многих людей, несмотря на хорошие оценки в школе, при построении обычных геометрических фигур возникает вопрос о том, как найти высоту треугольника или параллелограмма. Причем является самым сложным. Это происходит потому, что треугольник может быть острым, тупым, равнобедренным или прямоугольным. Для каждого из существуют свои правила построения и расчета.

Как найти высоту треугольника, в котором все углы острые, графическим способом

Если все углы у треугольника острые (каждый угол в треугольнике меньше 90 градусов), то для нахождения высоты необходимо сделать следующее.

  1. По заданным параметрам выполняем построение треугольника.
  2. Введем обозначения. А, В и С будут вершинами фигуры. Углы, соответствующие каждой вершине - α, β, γ. Противолежащие этим углам стороны - a, b, c.
  3. Высотой называется перпендикуляр, опущенный из вершины угла к противоположной стороне треугольника. Для нахождения высот треугольника проводим построение перпендикуляров: из вершины угла α к стороне a, из вершины угла β к стороне b и так далее.
  4. Точку пересечения высоты и стороны a обозначим H1, а саму высоту h1. Точка пересечения высоты и стороны b будет H2, высота соответственно h2. Для стороны c высота будет h3, а точка пересечения H3.

Высота в треугольнике с тупым углом

Теперь рассмотрим, как найти высоту треугольника, если один (больше 90 градусов). В этом случае высота, проведенная из тупого угла, будет внутри треугольника. Остальные две высоты будут находиться за пределами треугольника.

Пусть в нашем треугольнике углы α и β будут острыми, а угол γ - тупой. Тогда для построения высот, выходящих из углов α и β, надо продолжить противоположные им стороны треугольника, чтобы провести перпендикуляры.

Как найти высоту равнобедренного треугольника

У такой фигуры есть две равные стороны и основание, при этом углы, находящиеся при основании, также являются равными между собой. Это равенство сторон и углов облегчает построение высот и их вычисление.

Сначала нарисуем сам треугольник. Пусть стороны b и c, а также углы β, γ будут соответственно равными.

Теперь проведем высоту из вершины угла α, обозначим ее h1. Для эта высота будет одновременно биссектрисой и медианой.

Для основания можно сделать только одно построение. Например, провести медиану - отрезок, соединяющий вершину равнобедренного треугольника и противоположную сторону, основание, для нахождения высоты и биссектрисы. А для вычисления длины высоты для двух других сторон можно построить только одну высоту. Таким образом, чтобы графически определить, как вычислить высоту равнобедренного треугольника, достаточно найти две высоты из трех.

Как найти высоту прямоугольного треугольника

У прямоугольного треугольника определить высоты намного проще, чем у других. Это происходит потому, что сами катеты составляют прямой угол, а значит, являются высотами.

Для построения третьей высоты, как обычно, проводится перпендикуляр, соединяющий вершину прямого угла и противоположную сторону. В итоге для того, чтобы треугольника в данном случае, требуется только одно построение.

Треугольники.

Основные понятия.

Треугольник - это фигура, состоящая из трех отрезков и трех точек, не лежащих на одной прямой.

Отрезки называются сторонами , а точки - вершинами .

Сумма углов треугольника равна 180 º .

Высота треугольника.

Высота треугольника - это перпендикуляр, проведенный из вершины к противолежащей стороне.

В остроугольном треугольнике высота содержится внутри треугольника (рис.1).

В прямоугольном треугольнике катеты являются высотами треугольника (рис.2).

В тупоугольном треугольнике высота проходит вне треугольника (рис.3).

Свойства высоты треугольника:

Биссектриса треугольника.

Биссектриса треугольника - это отрезок, который делит угол вершины пополам и соединяет вершину с точкой на противолежащей стороне (рис.5).

Свойства биссектрисы:


Медиана треугольника.

Медиана треугольника - это отрезок, соединяющий вершину с серединой противолежащей стороны (рис.9а).


Длину медианы можно вычислить по формуле:

2b 2 + 2c 2 - a 2
m a 2 = ——————
4

где m a - медиана, проведенная к стороне а .

В прямоугольном треугольнике медиана, проведенная к гипотенузе, равна половине гипотенузы:

c
m c = —
2

где m c - медиана, проведенная к гипотенузе c (рис.9в)

Медианы треугольника пересекаются в одной точке (в центре масс треугольника) и делятся этой точкой в соотношении 2:1, отсчитывая от вершины. То есть отрезок от вершины к центру в два раза больше отрезка от центра к стороне треугольника (рис.9с).

Три медианы треугольника делят его на шесть равновеликих треугольников.

Средняя линия треугольника.

Средняя линия треугольника - это отрезок, соединяющий середины двух его сторон (рис.10).

Средняя линия треугольника параллельна третьей стороне и равна ее половине

Внешний угол треугольника.

Внешний угол треугольника равен сумме двух несмежных внутренних углов (рис.11).

Внешний угол треугольника больше любого несмежного угла.

Прямоугольный треугольник.

Прямоугольный треугольник - это треугольник, у которого есть прямой угол (рис.12).

Сторона прямоугольного треугольника, противолежащая прямому углу, называется гипотенузой .

Две другие стороны называются катетами .


Пропорциональные отрезки в прямоугольном треугольнике.

1) В прямоугольном треугольнике высота, проведенная из прямого угла, образует три подобных треугольника: ABC, ACH и HCB (рис.14а). Соответственно, углы, образуемые высотой, равны углам А и В.

Рис.14а

Равнобедренный треугольник.

Равнобедренный треугольник - это треугольник, у которого две стороны равны (рис.13).

Эти равные стороны называются боковыми сторонами , а третья - основанием треугольника.

В равнобедренном треугольнике углы при основании равны. (В нашем треугольнике угол А равен углу C).

В равнобедренном треугольнике медиана, проведенная к основанию, является одновременно и биссектрисой, и высотой треугольника.

Равносторонний треугольник.

Равносторонний треугольник - это треугольник, у которого все стороны равны (рис.14).

Свойства равностороннего треугольника:

Замечательные свойства треугольников.

У треугольников есть оригинальные свойства, которые помогут вам успешно решать задачи, связанные с этими фигурами. Некоторые из этих свойств изложены выше. Но повторяем их еще раз, добавив к ним несколько других замечательных особенностей:

1) В прямоугольном треугольнике с углами 90º, 30º и 60º катет b , лежащий напротив угла в 30º, равен половине гипотенузы. А катет a больше катета b в √3 раз (рис.15а ). К примеру, если катет b равен 5, то гипотенуза c обязательно равна 10, а катет а равен 5√3.

2) В прямоугольном равнобедренном треугольнике с углами 90º, 45º и 45º гипотенуза в √2 раз больше катета (рис.15b ). К примеру, если катеты равны 5, то гипотенуза равна 5√2.

3) Средняя линия треугольника равна половине параллельной стороны (рис.15с ). К примеру, если сторона треугольника равна 10, то параллельная ей средняя линия равна 5.

4) В прямоугольном треугольнике медиана, проведенная к гипотенузе, равна половине гипотенузы (рис.9в): m c = с/2.

5) Медианы треугольника, пересекаясь в одной точке, делятся этой точкой в соотношении 2:1. То есть отрезок от вершины к точке пересечения медиан в два раза больше отрезка от точки пересечения медиан к стороне треугольника (рис.9c)

6) В прямоугольном треугольнике середина гипотенузы является центром описанной окружности (рис.15d ).


Признаки равенства треугольников .

Первый признак равенства : если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

Второй признак равенства : если сторона и прилежащие к ней углы одного треугольника равны стороне и прилежащим к ней углам другого треугольника, то такие треугольники равны.

Третий признак равенства : если три стороны одного треугольника равны трем сторонам другого треугольника, то такие треугольники равны.

Неравенство треугольника.

В любом треугольнике каждая сторона меньше суммы двух других сторон.

Теорема Пифагора.

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов:

c 2 = a 2 + b 2 .

Площадь треугольника.

1) Площадь треугольника равна половине произведения его стороны на высоту, проведенную к этой стороне:

ah
S = ——
2

2) Площадь треугольника равна половине произведения двух любых его сторон на синус угла между ними:

1
S = — AB · AC · sin A
2

Треугольник, описанный около окружности.

Окружность называется вписанной в треугольник, если она касается всех его сторон (рис.16а ).


Треугольник, вписанный в окружность.

Треугольник называется вписанным в окружность, если он касается ее всеми вершинами (рис.17a ).

Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольника (рис.18).

Синус острого угла x противолежащего катета к гипотенузе.
Обозначается так: sin x .

Косинус острого угла x прямоугольного треугольника - это отношение прилежащего катета к гипотенузе.
Обозначается так: cos x .

Тангенс острого угла x - это отношение противолежащего катета к прилежащему катету.
Обозначается так: tg x .

Котангенс острого угла x - это отношение прилежащего катета к противолежащему.
Обозначается так: ctg x .

Правила:

Катет, противолежащий углу x , равен произведению гипотенузы на sin x :

b = c · sin x

Катет, прилежащий к углу x , равен произведению гипотенузы на cos x :

a = c · cos x

Катет, противоположный углу x , равен произведению второго катета на tg x :

b = a · tg x

Катет, прилежащий к углу x , равен произведению второго катета на ctg x :

a = b · ctg x .


Для любого острого угла x :

sin (90° - x ) = cos x

cos (90° - x ) = sin x


Высота треугольника это перпендикуляр, опущенный из любой вершины треугольника на противоположную сторону, или на ее продолжение (сторона, на которую опускается перпендикуляр, в данном случае называется основанием треугольника).

В тупоугольном треугольнике две высоты падают на продолжение сторон и лежат вне треугольника. Третья внутри треугольника.

В остроугольном треугольнике все три высоты лежат внутри треугольника.

В прямоугольном треугольнике катеты служат высотами.

Как найти высоту по основанию и площади

Напомним формулу для вычисления площади треугольника. Площадь треугольника вычисляется по формуле: A = 1/2bh .

  • А — площадь треугольника
  • b — сторона треугольника, на которую опущена высота.
  • h — высота треугольника

Посмотрите на треугольник и подумайте, какие величины вам уже известны. Если вам дана площадь, обозначьте ее буквой «А» или «S». Вам также должно быть дано значение стороны, обозначьте ее буквой «b». Если вам не дана площадь и не дана сторона, воспользуйтесь другим методом.

Имейте в виду, что основанием треугольника может быть любая его сторона, на которую опущена высота (независимо от того, как расположен треугольник). Чтобы лучше понять это, представьте, что вы можете повернуть этот треугольник. Поверните его так, чтобы известная вам сторона была обращена вниз.

Например, площадь треугольника равна 20, а одна из его сторон равна 4. В этом случае «‘А = 20″‘, ‘»b = 4′».

Подставьте данные вам значения в формулу для вычисления площади (А = 1/2bh) и найдите высоту. Сначала умножьте сторону (b) на 1/2, а затем разделите площадь (А) на полученное значение. Таким образом, вы найдете высоту треугольника.

В нашем примере: 20 = 1/2(4)h

20 = 2h
10 = h

Вспомните свойства равностороннего треугольника. В равностороннем треугольнике все стороны и все углы равны (каждый угол равен 60˚). Если в таком треугольнике провести высоту, вы получите два равных прямоугольных треугольника.
Например, рассмотрим равносторонний треугольник со стороной 8.

Вспомните теорему Пифагора. Теорема Пифагора гласит, что в любом прямоугольном треугольнике с катетами «а» и «b» гипотенуза «с» равна: a2+b2=c2. Эту теорему можно использовать, чтобы найти высоту равностороннего треугольника!

Разделите равносторонний треугольник на два прямоугольных треугольника (для этого проведите высоту). Затем обозначьте стороны одного из прямоугольных треугольников. Боковая сторона равностороннего треугольника – это гипотенуза «с» прямоугольного треугольника. Катет «а» равен 1/2 стороне равностороннего треугольника, а катет «b» – это искомая высота равностороннего треугольника.

Итак, в нашем примере с равносторонним треугольником с известной стороной, равной 8: c = 8 и a = 4.

Подставьте эти значения в теорему Пифагора и вычислите b2. Сначала возведите в квадрат «с» и «а» (умножьте каждое значение само на себя). Затем вычтите a2 из c2.

42 + b2 = 82
16 + b2 = 64
b2 = 48

Извлеките квадратный корень из b2, чтобы найти высоту треугольника. Для этого воспользуйтесь калькулятором. Полученное значение и будет высотой вашего равностороннего треугольника!

b = √48 = 6,93

Как найти высоту с помощью углов и сторон

Подумайте, какие значения вам известны. Вы можете найти высоту треугольника, если вам известны значения сторон и углов. Например, если известен угол между основанием и боковой стороной. Или если известны значения всех трех сторон. Итак, обозначим стороны треугольника: «a», «b», «c», углы треугольника: «А», «В», «С», а площадь — буквой «S».

Если вам известны все три стороны, вам понадобится значение площади треугольника и формула Герона.

Если вам известны две стороны и угол между ними, можете использовать следующую формулу для нахождения площади: S=1/2ab(sinC).

Если вам даны значения всех трех сторон, используйте формулу Герона. По этой формуле придется выполнить несколько действий. Сначала нужно найти переменную «s» (мы обозначим этой буквой половину периметра треугольника). Для этого подставьте известные значения в эту формулу: s = (a+b+c)/2.

Для треугольника со сторонами а = 4, b = 3, c = 5, s = (4+3+5)/2. В результате получается: s=12/2, где s=6.

Затем вторым действием мы находим площадь (вторая часть формулы Герона). Площадь = √(s(s-a)(s-b)(s-c)). Вместо слова «площадь» вставьте эквивалентную формулу для поиска площади: 1/2bh (или 1/2ah, или 1/2ch).

Теперь найдите эквивалентное выражение для высоты (h). Для нашего треугольника будет справедливо следующее уравнение: 1/2(3)h = (6(6-4)(6-3)(6-5)). Где 3/2h=√(6(2(3(1))). Получается, 3/2h = √(36). С помощью калькулятора вычислите квадратный корень. В нашем примере: 3/2h = 6. Получается, что высота (h) равна 4, сторона b – основание.

Если по условию задачи известны две стороны и угол, вы можете использовать другую формулу. Замените площадь в формуле эквивалентным выражением: 1/2bh. Таким образом, у вас получится следующая формула: 1/2bh = 1/2ab(sinC). Ее можно упростить до следующего вида: h = a(sin C), чтобы убрать одну неизвестную переменную.

Теперь осталось решить полученное уравнение. Например, пусть «а» = 3, «С» = 40 градусов. Тогда уравнение будет выглядеть так: «h» = 3(sin 40). С помощью калькулятора и таблицы синусов подсчитайте значение «h». В нашем примере h = 1,928.

Как найти наибольшую или наименьшую высоту треугольника? Чем меньше высота треугольника, тем больше проведенная к ней высота. То есть наибольшая из высот треугольника — та, которая проведена к его наименьшей стороне. — та, которая проведена к наибольшей из сторон треугольника.

Чтобы найти наибольшую высоту треугольника , можно площадь треугольника разделить на длину стороны, к которой проведена эта высота (то есть на длину наименьшей из сторон треугольника).

Соответственно, для нахождения наименьшей высоты треугольника можно площадь треугольника разделить на длину его наибольшей стороны.

Задача 1.

Найти наименьшую высоту треугольника, стороны которого равны 7 см, 8 см и 9 см.

Дано:

AC=7 см, AB=8 см, BC=9 см.

Найти: наименьшую высоту треугольника.

Решение:

Наименьшая из высот треугольника — та, которая проведена к его наибольшей стороне. Значит, нужно найти высоту AF, проведенную к стороне BC.

Для удобства записи введем обозначения

BC=a, AC=b, AB=c, AF=ha.

Высота треугольника равна частному от деления удвоенной площади треугольника на сторону, к которой эта высота проведена. можно найти с помощью формулы Герона. Поэтому

Вычисляем:

Ответ:

Задача 2.

Найти наибольшую сторону треугольника со сторонами 1 см, 25 см и 30 см.

Дано:

AC=25 см, AB=11 см, BC=30 см.

Найти:

наибольшую высоту треугольника ABC.

Решение:

Наибольшая высота треугольника проведена к его наименьшей стороне.

Значит, нужно найти высоту CD, проведенную к стороне AB.

Для удобства обозначим

Почти никогда не получится определить все параметры треугольника без дополнительных построений. Эти построения являются своеобразными графическими характеристиками треугольника, которые помогают определить величину сторон и углов.

Определение

Одной из таких характеристик является высота треугольника. Высота – это перпендикуляр, проведенный из вершины треугольника к его противоположной стороне. Вершиной называют одну из трех точек, которые вместе с тремя сторонами составляют треугольник.

Определение высоты треугольника может звучать и так: высота – это перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону.

Это определение звучит сложнее, но оно точнее отражает ситуацию. Дело в том, что в тупоугольном треугольнике не получится провести высоту внутри треугольника. Как видно на рисунке 1, высота в этом случае получается внешней. Кроме того, не стандартной ситуацией является построение высоты в прямоугольном треугольнике. В этом случае, две из трех высот треугольника будут проходить через катеты, а третья от вершины к гипотенузе.

Рис. 1. Высота тупоугольного треугольника.

Как правило, высота треугольника имеет обозначение буквой h. Так же обозначается высота и в других фигурах.

Как найти высоту треугольника?

Существует три стандартных способа нахождения высоты треугольника:

Через теорему Пифагора

Этот способ применяется для равносторонних и равнобедренных треугольников. Разберем решение для равнобедренного треугольника, а потом скажем, почему это же решение справедливо для равностороннего.

Дано : равнобедренный треугольник АВС с основанием АС. АВ=5, АС=8. Найти высоту треугольника.

Рис. 2. Рисунок к задаче.

Для равнобедренного треугольника важно знать, какая именно сторона является основанием. Это определяет боковые стороны, которое должны быть равны, а так же высоту, на которую действую некоторые свойства.

Свойства высоты равнобедренного треугольника, проведенной к основания:

  • Высота совпадает с медианной и биссектрисой
  • Делит основание на две равные части.

Высоту обозначим, как ВD. DС найдем как половину от основания, так как высота точкой D делит основание пополам. DС=4

Высота это перпендикуляр, значит ВDС – прямоугольный треугольник, а высота ВН является катетом этого треугольника.

Найдем высоту по теореме Пифагора: $$ВD=\sqrt{BC^2-HC^2}=\sqrt{25-16}=3$$

Любой равносторонний треугольник является равнобедренным, только основание у него равно боковым сторонам. То есть, можно использовать тот же порядок действий.

Через площадь треугольника

Этим способом можно пользоваться для любого треугольника. Чтобы им воспользоваться, нужно знать значение площади треугольника и стороны, к которой проведена высота.

Высоты в треугольнике не равны, поэтому для соответствующей стороны получится вычислить соответствующую высоту.

Формула площади треугольника: $$S={1\over2}*bh$$, где b – это сторона треугольника,а h – высота, проведенная к этой стороне. Выразим из формулы высоту:

$$h=2*{S\over b}$$

Если площадь равна 15, сторона 5, то высота $$h=2*{15\over5}=6$$

Через тригонометрическую функцию

Третий способ подойдет, если известна сторона и угол при основании. Для этого придется воспользоваться тригонометрической функцией.

Рис. 3. Рисунок к задаче.

Угол ВСН=300 , а сторона BC=8. У нас все тот же прямоугольный треугольник BCH. Воспользуемся синусом. Синус это отношение противолежащего катета к гипотенузе, значит: BH/BC=cos BCH.

Угол известен, как и сторона. Выразим высоту треугольника:

$$BH=BC*\cos (60\unicode{xb0})=8*{1\over2}=4$$

Значение косинуса в общем случае берется из таблиц Брадиса, но значения тригонометрических функций для 30,45 и 60 градусов – табличные числа.

Что мы узнали?

Мы узнали, что такое высота треугольника, какие бывают высоты и как они обозначаются. Разобрались в типовых задачах и записали три формулы для высоты треугольника.

Тест по теме

Оценка статьи

Средняя оценка: 4.6 . Всего получено оценок: 152.